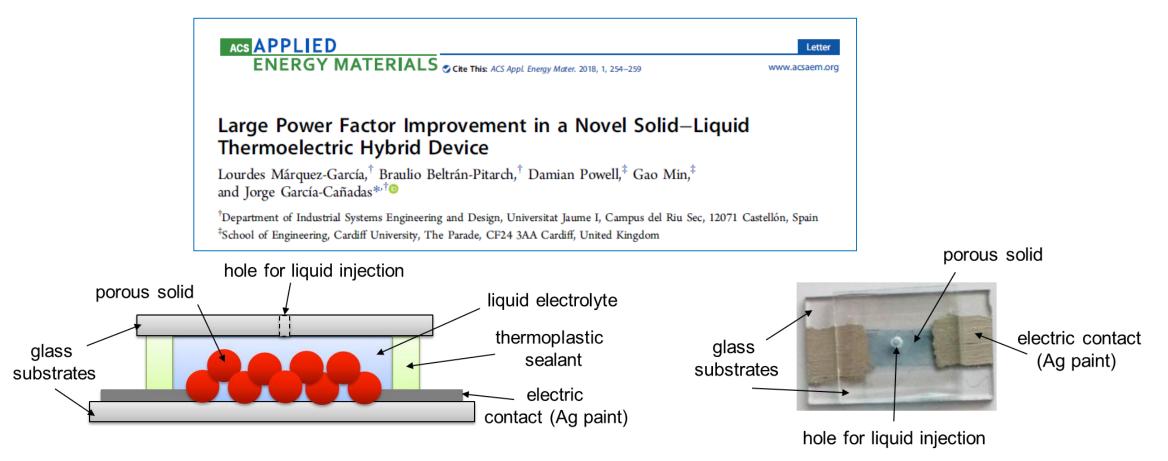


Significant power factor improvement in a hybrid solid-liquid thermoelectric device formed by Sb:SnO₂ in contact with a chromium complex solution

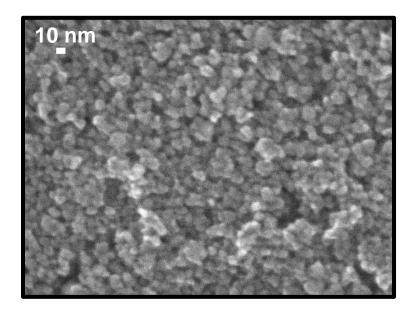
<u>Castro-Ruiz. Sergio</u>, Solís-De La Fuente. Mauricio, Márquez-García. Lourdes, Beltrán-Pitarch. Braulio, Mota-Babiloni. Adrián, Vidan. Francisco, García-Cañadas, Jorge

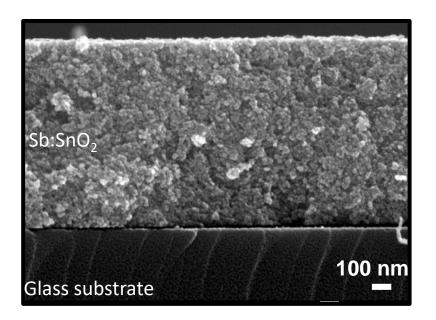
> <u>Thermal and Electrical Systems Laboratory</u> (http://teslab.uji.es) Department of Industrial Systems Engineering and Design Universitat Jaume I, Castelló de la Plana (Spain) E-mail: scastro@uji.es

<u>Outline</u>


- 1. Introduction
- 2. Experimental part
- 3. Results
- 4. Summary
- 5. Acknowledgements

A new hybrid solid-liquid thermoelectric (TE) device was published in 2018 by our group: TE solid which is permeated by a liquid electrolyte that was able to improve the power factor (PF) more than 3 times.

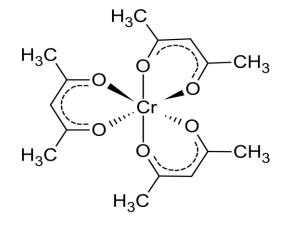

In this study, a **Cr complex solution** will be employed to prove if the approach can be extended to **this kind of electrolyte.**



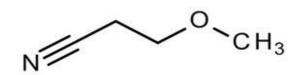
The porous solid: nanostructured Sb:SnO₂ (ATO)

- ✓ Prepared from commercial colloidal water dispersion (Keeling and Walker Ltd., UK). Deposited by spin coating (5 layers) onto a glass substrate and annealed at 550 °C for 45 min.
- ✓ Film is formed by interconnected **nanoparticles** of around **4 to 10 nm** diameter. The film thickness is ≈1.0 µm (SEM) and it shows certain porosity (≈10%).

(SEM images)

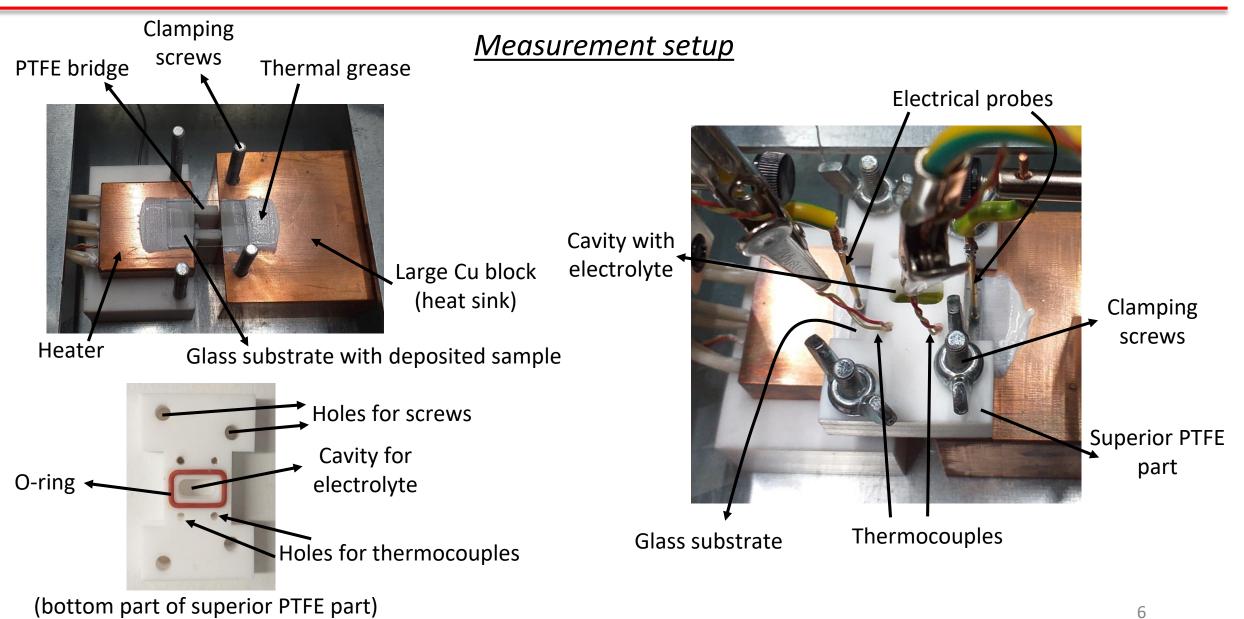


The electrolyte: Chromium acetylacetonate ([Cr(acac)₃]) in 3-MPN

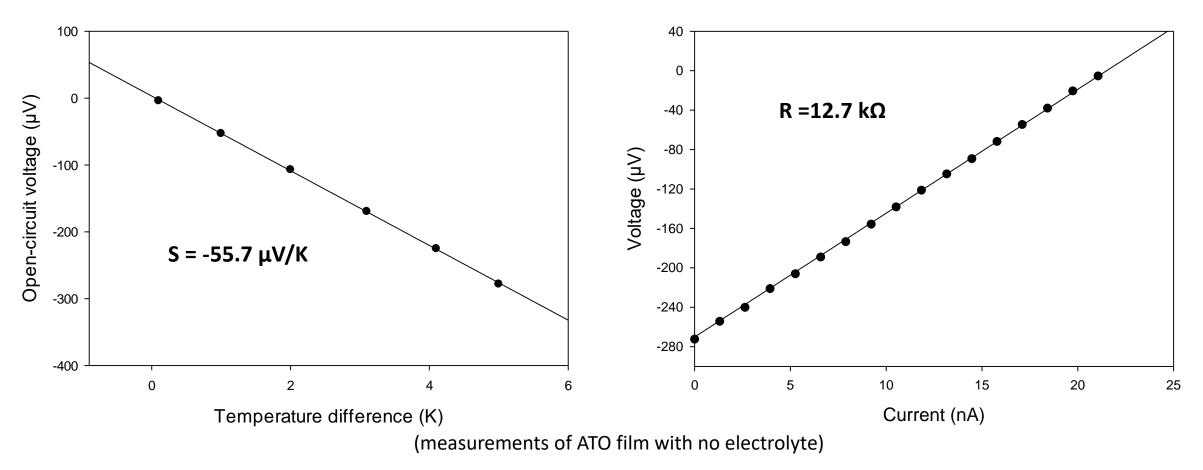

 ✓ It is prepared by dissolving the Cr complex into the 3-methoxypropionitrile (3-MPN) solvent to obtain a 0.1M solution.

Chromium acetylacetonate [Cr(acac)₃]

3-methoxypropionitrile



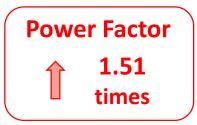
2. Experimental part


2. Experimental part

Thermoelectric measurements

✓ **Seebeck coefficient**: Extracted from the slope of the $V_{oc} - \Delta T$ plot.

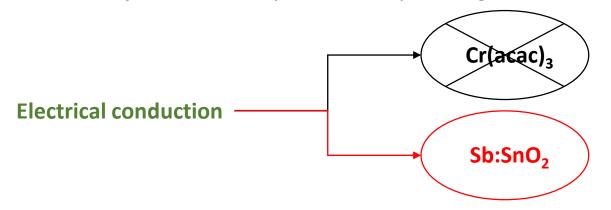
✓ **Device electrical resistance**: Extracted from the slope of the I – V curve at Δ T=5 K.



✓ ATO samples contacted by Ag paint were tested with and without the presence of 0.1M Cr(acac)₃ dissolved in 3-MPN to evaluate the variation in the thermoelectric properties.

Sample	Seebeck coefficient (µV/K)			Device electric resistance (kΩ)			
	Without electrolyte	With electrolyte	S variation (%)	Without electrolyte	With electrolyte	R variation (%)	PF _{with} /PF _{without}
S1	-55.7	-40.1	-27.9	12.7	3.89	-69.3	1.71
S2	-57.3	-42.3	-26.2	18.5	7.56	-58.9	1.34
S3	-59.4	-51.2	-13.9	10.2	5.08	-50.1	1.48

Seebeck Resistance **59.4%** 22.7%



✓ One sample was fabricated without ATO, to evaluate if the electrical conduction occurs through the electrolyte.

Sample	Seebeck coefficient (µV/K)	Device electric resistance (kΩ)	
	With electrolyte	With electrolyte	
Glass substrate with Ag paint contacts and Cr(acac) ₃	-	4,580	

Seebeck could not be measured due to the large resistance of the device. A value in the order of MΩ was obtained for the device resistance, which proves that electronic conduction is not possible through the electrolyte and takes place mainly through the ATO.

✓ Samples in contact with only 3-MPN (no Cr complex) were tested to understand the system further.

Sample	Seebeck coefficient (µV/K)			Device electric resistance (kΩ)			
	Without electrolyte	With electrolyte	S variation (%)	Without electrolyte	With electrolyte	R variation (%)	PF _{with} /PF _{without}
S4	-57.7	-36.9	-35.9	16.5	9.40	-43.1	0.72
S5	-57.1	-43.1	-24.7	8.70	5.39	-38.0	1.00
S6	-49.1	-35.5	-27.8	13.4	8.88	-33.4	0.80

Seebeck	Resistance	Power Factor
29.5%	38.2%	0.84 times

✓ If Cr(acac)₃ is not present, PF improvement is not shown, since the device resistance does not reach lower values [only 38% reduction, while 59% was obtained with Cr(acac)₃].

- ✓ A hybrid system formed by nanostructured Sb:SnO₂ permeated by a Cr complex electrolyte has been investigated to improve the thermoelectric power factor.
- ✓ More than 1.50 times improvement in the power factor has been achieved due to a 59.4 % reduction of the device electric resistance and a 22.7% drop in the absolute value of the Seebeck coefficient.
- ✓ It was demonstrated that the drop in the resistance is not due to the conduction through the electrolyte.
- ✓ It has been shown that when the Cr complex is not present in the system (only 3-MPN as a electrolyte), no PF improvement (0.82 times) is obtained.

This electrolyte will be **tested using state-of-the-art TE materials** (e.g. Bi₂Te₃) within the EU **UncorrelaTEd project**

http://uncorrelated.uji.es/

✓ This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 863222.

Disclaimer: This presentation reflects only the author's view and that the funding Agency is not responsible for any use that may be made of the information it contains.